skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Millet, Dylan B"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Dry deposition is the second largest tropospheric ozone (O3) sink and occurs through stomatal and nonstomatal pathways. Current O3uptake predictions are limited by the simplistic big‐leaf schemes commonly used in chemical transport models (CTMs) to parameterize deposition. Such schemes fail to reproduce observed O3fluxes over terrestrial ecosystems, highlighting the need for more realistic treatment of surface‐atmosphere exchange in CTMs. We address this need by linking a resolved canopy model (1D Multi‐Layer Canopy CHemistry and Exchange Model, MLC‐CHEM) to the GEOS‐Chem CTM and use this new framework to simulate O3fluxes over three north temperate forests. We compare results with in situ measurements from four field studies and with standalone, observationally constrained MLC‐CHEM runs to test current knowledge of O3deposition and its drivers. We show that GEOS‐Chem overpredicts observed O3fluxes across all four studies by up to 2×, whereas the resolved‐canopy models capture observed diel profiles of O3deposition and in‐canopy concentrations to within 10%. Relative humidity and solar irradiance are strong O3flux drivers over these forests, and uncertainties in those fields provide the largest remaining source of model deposition biases. Flux partitioning analysis shows that: (a) nonstomatal loss accounts for 60% of O3deposition on average; (b) in‐canopy chemistry makes only a small contribution to total O3fluxes; and (c) the CTM big‐leaf treatment overestimates O3‐driven stomatal loss and plant phytotoxicity in these temperate forests by up to 7×. Results motivate the application of fully online vertically explicit canopy schemes in CTMs for improved O3predictions. 
    more » « less
    Free, publicly-accessible full text available December 28, 2025
  2. Indirect nitrous oxide (N2O) emissions from streams and rivers are a poorly constrained term in the global N2O budget. Current models of riverine N2O emissions place a strong focus on denitrification in groundwater and riverine environments as a dominant source of riverine N2O, but do not explicitly consider direct N2O input from terrestrial ecosystems. Here, we combine N2O isotope measurements and spatial stream network modeling to show that terrestrial-aquatic interactions, driven by changing hydrologic connectivity, control the sources and dynamics of riverine N2O in a mesoscale river network within the U.S. Corn Belt. We find that N2O produced from nitrification constituted a substantial fraction (i.e., > 30%) of riverine N2O across the entire river network. The delivery of soil-produced N2O to streams was identified as a key mechanism for the high nitrification contribution and potentially accounted for more than 40% of the total riverine emission. This revealed large terrestrial N2O input implies an important climate-N2O feedback mechanism that may enhance riverine N2O emissions under a wetter and warmer climate. Inadequate representation of hydrologic connectivity in observations and modeling of riverine N2O emissions may result in significant underestimations. 
    more » « less
  3. Atmospheric chemistry models generally assume organic aerosol (OA) to be photochemically inert. Recent mechanisms for the oxidation of biogenic isoprene, a major source of secondary organic aerosol (iSOA), produce excessive OA in the absence of subsequent OA reactivity. At the same time, models underestimate atmospheric concentrations of formic and acetic acids for which OA degradation could provide a source. Here we show that the aqueous photooxidation of an isoprene-derived organosulfate (2-methyltriolsulfate or MTS), an important iSOA component, produces formic and acetic acids in high yields and at timescales competitive with deposition. Experimental data are well fit by a kinetic model in which three sequential oxidation reactions of the isoprene organosulfate produce two molar equivalents of formic acid and one of acetic acid. We incorporate this chemistry and that of 2-methyltetrol, another ubiquitous iSOA component, into the GEOS-Chem global atmospheric chemistry model. Simulations show that photooxidation and subsequent revolatilization of this iSOA may account for up to half of total iSOA loss globally, producing 4 Tg a−1 each of formic and acetic acids. This reduces model biases in gas-phase formic acid and total organic aerosol over the Southeast United States in summer by ∼30% and 60% respectively. While our study shows the importance of adding iSOA photochemical sinks into atmospheric models, uncertainties remain that warrant further study. In particular, improved understanding of reaction dependencies on particle characteristics and concentrations of particle-phase OH and other oxidants are needed to better simulate the effects of this chemistry on the atmospheric budgets of organic acids and iSOA. 
    more » « less
  4. Abstract. The hydroxyl (OH), hydroperoxy (HO2), and organic peroxy (RO2)radicals play important roles in atmospheric chemistry. In the presence ofnitrogen oxides (NOx), reactions between OH and volatile organiccompounds (VOCs) can initiate a radical propagation cycle that leads to theproduction of ozone and secondary organic aerosols. Previous measurements ofthese radicals under low-NOx conditions in forested environmentscharacterized by emissions of biogenic VOCs, including isoprene andmonoterpenes, have shown discrepancies with modeled concentrations. During the summer of 2016, OH, HO2, and RO2 radical concentrationswere measured as part of the Program for Research on Oxidants:Photochemistry, Emissions, and Transport – Atmospheric Measurements ofOxidants in Summer (PROPHET-AMOS) campaign in a midlatitude deciduousbroadleaf forest. Measurements of OH and HO2 were made by laser-inducedfluorescence–fluorescence assay by gas expansion (LIF-FAGE) techniques,and total peroxy radical (XO2) mixing ratios were measured by the Ethane CHemical AMPlifier (ECHAMP) instrument. Supporting measurements ofphotolysis frequencies, VOCs, NOx, O3, and meteorological datawere used to constrain a zero-dimensional box model utilizing either theRegional Atmospheric Chemical Mechanism (RACM2) or the Master ChemicalMechanism (MCM). Model simulations tested the influence of HOxregeneration reactions within the isoprene oxidation scheme from the LeuvenIsoprene Mechanism (LIM1). On average, the LIM1 models overestimated daytimemaximum measurements by approximately 40 % for OH, 65 % for HO2,and more than a factor of 2 for XO2. Modeled XO2 mixing ratioswere also significantly higher than measured at night. Addition of RO2 + RO2 accretion reactions for terpene-derived RO2 radicals tothe model can partially explain the discrepancy between measurements andmodeled peroxy radical concentrations at night but cannot explain thedaytime discrepancies when OH reactivity is dominated by isoprene. Themodels also overestimated measured concentrations of isoprene-derivedhydroxyhydroperoxides (ISOPOOH) by a factor of 10 during the daytime,consistent with the model overestimation of peroxy radical concentrations.Constraining the model to the measured concentration of peroxy radicalsimproves the agreement with the measured ISOPOOH concentrations, suggestingthat the measured radical concentrations are more consistent with themeasured ISOPOOH concentrations. These results suggest that the models maybe missing an important daytime radical sink and could be overestimating therate of ozone and secondary product formation in this forest. 
    more » « less
  5. Rapid production of formic acid in biomass burning smoke is not captured by the Master Chemical Mechanism (MCM) nor simplified GEOS-Chem chemistry, likely due to missing secondary chemical production. 
    more » « less
  6. Abstract. The Arctic is a climatically sensitive region that has experienced warming at almost 3 times the global average rate in recent decades, leading to an increase in Arctic greenness and a greater abundance of plants that emit biogenic volatile organic compounds (BVOCs). These changes in atmospheric emissions are expected to significantly modify the overall oxidative chemistry of the region and lead to changes in VOC composition and abundance, with implications for atmospheric processes. Nonetheless, observations needed to constrain our current understanding of these issues in this critical environment are sparse. This work presents novel atmospheric in situ proton-transfer-reaction time-of-flight mass spectrometry (PTR-ToF-MS) measurements of VOCs at Toolik Field Station (TFS; 68∘38′ N, 149∘36' W), in the Alaskan Arctictundra during May–June 2019. We employ a custom nested grid version of theGEOS-Chem chemical transport model (CTM), driven with MEGANv2.1 (Model ofEmissions of Gases and Aerosols from Nature version 2.1) biogenic emissionsfor Alaska at 0.25∘ × 0.3125∘ resolution, to interpret the observations in terms of their constraints onBVOC emissions, total reactive organic carbon (ROC) composition, andcalculated OH reactivity (OHr) in this environment. We find total ambientmole fraction of 78 identified VOCs to be 6.3 ± 0.4 ppbv (10.8 ± 0.5 ppbC), with overwhelming (> 80 %) contributions are from short-chain oxygenated VOCs (OVOCs) including methanol, acetone and formaldehyde. Isoprene was the most abundant terpene identified. GEOS-Chem captures the observed isoprene (and its oxidation products), acetone and acetaldehyde abundances within the combined model and observation uncertainties (±25 %), but underestimates other OVOCs including methanol, formaldehyde, formic acid and acetic acid by a factor of 3 to 12. The negative model bias for methanol is attributed to underestimated biogenic methanol emissions for the Alaskan tundra in MEGANv2.1. Observed formaldehyde mole fractions increase exponentially with air temperature, likely reflecting its biogenic precursors and pointing to a systematic model underprediction of its secondary production. The median campaign-calculated OHr from VOCs measured at TFS was 0.7 s−1, roughly 5 % of the values typically reported in lower-latitude forested ecosystems. Ten species account for over 80 % of the calculated VOC OHr, with formaldehyde, isoprene and acetaldehyde together accounting for nearly half of the total. Simulated OHr based on median-modeled VOCs included in GEOS-Chem averages 0.5 s−1 and is dominated by isoprene (30 %) and monoterpenes (17 %). The data presented here serve as a critical evaluation of our knowledge of BVOCs and ROC budgets in high-latitude environments and represent a foundation for investigating and interpreting future warming-driven changes in VOC emissions in the Alaskan Arctic tundra. 
    more » « less
  7. Abstract. Nitrous oxide (N2O) is a long-lived potent greenhouse gas and stratospheric ozone-depleting substance that has been accumulating in the atmosphere since the preindustrial period. The mole fraction of atmospheric N2O has increased by nearly 25 % from 270 ppb (parts per billion) in 1750 to 336 ppb in 2022, with the fastest annual growth rate since 1980 of more than 1.3 ppb yr−1 in both 2020 and 2021. According to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR6), the relative contribution of N2O to the total enhanced effective radiative forcing of greenhouse gases was 6.4 % for 1750–2022. As a core component of our global greenhouse gas assessments coordinated by the Global Carbon Project (GCP), our global N2O budget incorporates both natural and anthropogenic sources and sinks and accounts for the interactions between nitrogen additions and the biogeochemical processes that control N2O emissions. We use bottom-up (BU: inventory, statistical extrapolation of flux measurements, and process-based land and ocean modeling) and top-down (TD: atmospheric measurement-based inversion) approaches. We provide a comprehensive quantification of global N2O sources and sinks in 21 natural and anthropogenic categories in 18 regions between 1980 and 2020. We estimate that total annual anthropogenic N2O emissions have increased 40 % (or 1.9 Tg N yr−1) in the past 4 decades (1980–2020). Direct agricultural emissions in 2020 (3.9 Tg N yr−1, best estimate) represent the large majority of anthropogenic emissions, followed by other direct anthropogenic sources, including fossil fuel and industry, waste and wastewater, and biomass burning (2.1 Tg N yr−1), and indirect anthropogenic sources (1.3 Tg N yr−1) . For the year 2020, our best estimate of total BU emissions for natural and anthropogenic sources was 18.5 (lower–upper bounds: 10.6–27.0) Tg N yr−1, close to our TD estimate of 17.0 (16.6–17.4) Tg N yr−1. For the 2010–2019 period, the annual BU decadal-average emissions for both natural and anthropogenic sources were 18.2 (10.6–25.9) Tg N yr−1 and TD emissions were 17.4 (15.8–19.20) Tg N yr−1. The once top emitter Europe has reduced its emissions by 31 % since the 1980s, while those of emerging economies have grown, making China the top emitter since the 2010s. The observed atmospheric N2O concentrations in recent years have exceeded projected levels under all scenarios in the Coupled Model Intercomparison Project Phase 6 (CMIP6), underscoring the importance of reducing anthropogenic N2O emissions. To evaluate mitigation efforts and contribute to the Global Stocktake of the United Nations Framework Convention on Climate Change, we propose the establishment of a global network for monitoring and modeling N2O from the surface through to the stratosphere. The data presented in this work can be downloaded from https://doi.org/10.18160/RQ8P-2Z4R (Tian et al., 2023). 
    more » « less
  8. null (Ed.)